Rhythm Pharmaceuticals

Targeting MC4R pathway and transforming the care of patients with rare genetic disorders of obesity

May 2020
This presentation contains certain statements that are forward-looking within the meaning of Section 27A of the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as amended, and that involve risks and uncertainties, including statements regarding Rhythm's expectations for 2020, anticipated timing for enrollment, our sufficiency of cash, design and completion of clinical trials, the timing for filing of an NDA, MAA and other similar filings, the release of results of clinical trials, and expectations regarding Rhythm’s financial position, strategy, prospects and plans. Statements using words such as "expect", "anticipate", "believe", "may", "will" and similar terms are also forward-looking statements. Such statements are subject to numerous risks and uncertainties, including but not limited to, our ability to enroll patients in clinical trials, the outcome of clinical trials, the impact of competition, the impact of management departures and transitions, the ability to achieve or obtain necessary regulatory approvals, risks associated with data analysis and reporting, our expenses, and other risks as may be detailed from time to time in our Annual Reports on Form 10-K and Quarterly Reports on Form 10-Q and other reports we file with the Securities and Exchange Commission. Except as required by law, we undertake no obligations to make any revisions to the forward-looking statements contained in this presentation or to update them to reflect events or circumstances occurring after the date of this presentation, whether as a result of new information, future developments or otherwise.
Meet Adalissa and Solomon: Siblings Living with Bardet-Biedl Syndrome

"They are constantly, all day long saying they are hungry and asking what’s for the next meal and what are we eating the next day. We keep a menu planned and if we deviate from that menu it’s a disaster”

– Olivia, Mother of Adalissa and Solomon

“Adalissa: Birth and Infancy
Birth abnormalities (including polydactyly and hydrencephrosis)
As infant, rapid weight gain and signs of hyperphagia (consumes bottle quickly and cries for more)

Adalissa: Early Childhood (1-7)
Existing symptoms worsen; weight gain and hyperphagia may have contributed to:
• High blood pressure
• Sleep apnea
• Lack of mobility
• Anxiety
New symptoms appear:
• Developmental delays
• Worsening kidneys
• Progressive vision loss

Adalissa and Solomon with their two other siblings (unaffected)

Adalissa: Diagnosis
After many years of searching, Adalissa is diagnosed at age 7
Solomon, born three years after Adalissa’s diagnosis, was diagnosed in utero (polydactyly and cystic kidneys found)

Present: Adalissa 15, Solomon 5
Constant focus on managing weight gain and hyperphagia through restricted diets, exercise, locked cabinets, etc.
Additional symptoms: chronic kidney disease, progressive vision loss, hormone deficiencies, learning disabilities

“We had to make modifications and accommodations to our house in order to better fit our children. We have had to put locks on our cupboards and fridge and freezer to protect them from themselves!”

– Olivia, Mother of Adalissa and Solomon
Rhythm’s Focus in 2020 is Expanding the Opportunity for Setmelanotide in Rare Genetic Disorders of Obesity

1. Secure **FDA approval** for POMC or LEPR deficiency obesities

2. Deliver on the potential of setmelanotide to patients with **Bardet-Biedl and Alström syndromes** and advance disease understanding ahead of **pivotal Phase 3 data**

3. Establish proof-of-concept in **new indications** currently in **Phase 2 Basket Study**

4. Drive disease understanding through **genetic sequencing** and community building
<table>
<thead>
<tr>
<th>#</th>
<th>Event</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>First potential approval for setmelanotide in POMC or LEPR deficiency obesities</td>
<td>- 1Q: NDA submitted
- 2Q: MAA submission</td>
</tr>
<tr>
<td>2</td>
<td>Bardet-Biedl and Alström syndromes Phase 3</td>
<td>- 4Q or 1Q21: Topline data from Phase 3 trial</td>
</tr>
<tr>
<td>3</td>
<td>New indications</td>
<td>- 2020: Proof-of-concept data in HET patients and one or more additional rare genetic disorders of obesity
- 2020: Clinical development update for once-weekly formulation
- 2020: Filing of investigational new drug application for RM-853 for Prader-Willi syndrome</td>
</tr>
</tbody>
</table>
Setmelanotide has Potential to Address Multiple MC4R Pathway Disorders

Addresses MC4R pathway by replacing MSH stimulating hormone

Genetic targets under regulatory review
Genetic targets in Phase 3
Genetic targets added to Phase 2 Basket study Sept, 2019
Other potentially relevant gene targets
MC4R Pathway Disorders: Genetic or Syndromic Diagnosis

Genetically-identified

- **Patients diagnosed after genetic screening**

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Estimated U.S. Patients*</th>
</tr>
</thead>
<tbody>
<tr>
<td>POMC deficiency obesity</td>
<td>100-500</td>
</tr>
<tr>
<td>LEPR deficiency obesity</td>
<td>500-2,000</td>
</tr>
<tr>
<td>HETs POMC or LEPR heterozygous obesity</td>
<td>>20,000 U.S. patients*</td>
</tr>
<tr>
<td>SRC1 deficiency obesity</td>
<td>>23,000</td>
</tr>
<tr>
<td>SH2B1 deficiency obesity</td>
<td>>24,000</td>
</tr>
<tr>
<td>MC4R deficiency obesity**</td>
<td>~10,000 U.S. patients*</td>
</tr>
</tbody>
</table>

Clinically-identifiable, syndromic

- **Patients often known to the medical system**

<table>
<thead>
<tr>
<th>Syndrome</th>
<th>Estimated U.S. Patients*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bardet-Biedl syndrome</td>
<td>1,500-2,500 U.S. patients*</td>
</tr>
<tr>
<td>Alström syndrome†</td>
<td>~500-1,000 U.S. patients*</td>
</tr>
<tr>
<td>Smith-Magenis syndrome</td>
<td>~2,400 U.S. patients*</td>
</tr>
</tbody>
</table>

*Based on company estimates; Images are for illustrative purposes only and not intended to imply or suggest actual prevalence estimates or patient identification yields.

**Estimated prevalence of U.S. patients with addressable variants of the MC4R.

† Prevalence estimate for Alström syndrome is worldwide.
Bardet-Biedl & Alström Syndromes

Deliver on the potential of setmelanotide to patients with Bardet-Biedl and Alström syndromes and advance disease understanding ahead of pivotal Phase 3 data
Strong Phase 2 Data in BBS Shows Substantial Weight Loss and Hunger Control at ~Two Years, Supporting Advancement into Phase 3

<table>
<thead>
<tr>
<th>Gene</th>
<th>Treatment, weeks</th>
<th>Weight Change from Baseline</th>
<th>Hunger Score Change from Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBS1</td>
<td>123</td>
<td>-36.7%</td>
<td>-33%</td>
</tr>
<tr>
<td>BBS2</td>
<td>119</td>
<td>-15%</td>
<td>-71%</td>
</tr>
<tr>
<td>BBS10</td>
<td>121</td>
<td>-28%</td>
<td>-100%*</td>
</tr>
<tr>
<td>BBS12</td>
<td>108</td>
<td>-25%</td>
<td>67%</td>
</tr>
<tr>
<td>BBS5</td>
<td>83</td>
<td>-10.8%</td>
<td>-38%</td>
</tr>
<tr>
<td>BBS4</td>
<td>73</td>
<td>-17.9%</td>
<td>-14%**</td>
</tr>
</tbody>
</table>

- Six of nine patients responded - all maintain weight loss at ~two years
- Mean percent weight reduction of responders = **22.2%** after ~two years on therapy
- Three patients discontinued treatment†
- Seven of nine patients enrolled in long-term extension study

Data announced by Rhythm in September 2019.

*Pt. has cognitive impairment, so Food Problem Diary (FPD) score maintained by caregiver; **Pt. did not have baseline hunger measure. The first score was a 7, which was not recorded until after the patient had received treatment. Current score is a 6.; † Patient 5 (pediatric patient with BBS1 variant and type 1 diabetes) experienced 53.3% reduction in hunger and reduction in hemoglobin A1c (10.1% to 7.6%) before withdrawing. Patient subsequently entered long-term extension study; Two patients (one non-genetically confirmed) withdrew due to lack of weight loss.
Bardet Biedl & Alström Syndromes Phase 3 Trial: Enrollment in Pivotal Cohort Complete

Pivotal cohort:
- 32 BBS patients
- 6 Alström syndrome patients

Enrolling patients in supplemental cohort

Primary Endpoint: Proportion of patients (>12 years of age) who have at least a 10% reduction in body weight.
Partnering with the Patient Community to Build Awareness and Disease Understanding

Ongoing relationships with patient advocacy groups to drive awareness, disease understanding and build support for regulatory pathway

- Bardet-Biedl Syndrome Foundation
- BBS Family Foundation
- BBS UK
- Alström Syndrome UK
- Alström Syndrome International (ASI)

Existing patient cohorts allow for better understanding of the clinical course of the disease

- CRIBBS registry includes 550 patients as of December 2019
- ASI maintains country-level patient records
- Large cohorts of BBS patients known in France, UK, Germany and more
Engaging with Physicians to Advance Disease Understanding for BBS and Alström Syndrome

Rhythm field medical teams have engaged with more than 275 physicians in the U.S. and EU who are involved in the diagnosis and management of BBS and Alström syndrome.

- Identified patients in the United States who are being treated for BBS or Alström syndrome: 500 – 870*
- Identified patients in Europe who are being treated for BBS or Alström syndrome: 1,200 – 1,725*

Rhythm GOLD Academy: 20 faculty members have trained more than 750 providers on rare genetic disorders of obesity facilitating management of severe obesity and hunger.

*Assessment of numbers of patients relies on HCP recall, which may result in over or under reporting
Rhythm Engine & Basket Study
Establish proof-of-concept in new indications
Rhythm Engine is the Foundation of Future Growth through Patient Finding and Clinical Development

UNCOVERING RARE OBESITY
Sponsored genetic testing program

101-gene panel

Phase 2 Basket Study
Six indications

Biobanks
Approximately 5.7M People in the U.S. Have Severe, Early-onset Obesity

Rhythm is focused on patients who have rare genetic variants in the MC4R pathway

1,584 or 11.7% of these individuals have rare variants making them potentially eligible for Rhythm’s Phase 2 Basket Study

Rhythm has sequenced 13,567** individuals with severe obesity

~5.7M people in the United States with early-onset, severe obesity*

Rhythm is initially studying 10 rare genetic disorders of obesity, estimated to affect upwards of 85,000 people in the United States

*These calculations assume a U.S. population of 327 million, of which 1.7% have early-onset, severe obesity (Hales et al in Jama – April 2018: Trends in Obesity and Severe Obesity Prevalence in US Youth and Adults by Sex and Age, 2007-2008 to 2015-2016);

** As of June 2019; sequencing efforts are ongoing, and Rhythm has sequencing samples from more than 25,000 individuals, as of Dec. 31, 2019, and will provide an update on an analysis of that data in 2020.
Rhythm’s Approach Enables Deep Understanding of Rare Genetic Disorders of Obesity and Optimizes Registration/Commercial Strategy

Rhythm’s Sequencing Database

U.S. Prevalence Estimate
Conservative projection of individuals whose obesity is likely due to genetic variants in the MC4R pathway

Phase 2 Basket Study
Facilitates understanding of phenotype-genotype relationship and setmelanotide responsiveness

Translational research informs classification of genetic variants and interpretation of clinical data

Optimized strategy for clinical development, registration and commercialization
Sequencing Yield for Genetically-identified Indications Points to Significant Opportunity

Individuals with severe obesity sequenced 13,567*

Yield for genetically-identified indications**:

- POMC or LEPR: n = 29; 0.2%
- High-impact HETs: n = 97; 0.7%
- MC4R: n = 269; 2.0%
- SH2B1: n = 245; 1.8%
- SRC1: n = 335; 2.5%

Syndromic indications, which are diagnosed based on clinical presentation, not included here

* As of June 30, 2019; sequencing efforts are ongoing.
**Basket yield includes 683 individuals with other variants; some patients have more than one variant.
Translating Rhythm Sequencing Data to U.S. Prevalence Estimates

Most stringent criteria for variant classification to establish baseline estimates of US prevalence

Rhythm database: **Obese individuals with a variant**

1. **Rare variant**

2. **High-impact loss-of-function variant**
 (literature or internal experimental data)

3. **computational algorithms***

Prevalence estimate: **Obese individuals with a likely causative rare variant**

Stratifying Patients Based on Loss of Function (LOF) Variant – HET Example

U.S. prevalence approximately **1 million** for individuals with heterozygous POMC or LEPR variants, and **>20,000** high-impact LOF patients in U.S.*

- Patients present with severe, early-onset obesity and hyperphagia
- Basket Study cohorts stratified by impact of variant on pathway function
- High-impact LOF variants expected to be most responsive to setmelanotide
- Other cohorts will clarify potential setmelanotide treatable populations
- Data update expected in 2020

* Calculated based on the following assumptions: US pop 327 million; 1.7% has early onset, severe obesity; High impact HET allele frequency based on Rhythm genetic sequencing (Feb 2019)
Basket Study Key to Proof of Concept, Advancing Indications to Phase 3

Enrolling Multiple Cohorts in Each Indication

- Improve understanding of interplay of genetic variation and MC4R pathway function
- Aim for seamless integration with sequencing efforts
- Rapid proof-of-concept in new indications
- Delivers pivotal indications into phase 3 trials

Images are for illustrative purposes only and not intended to imply or suggest actual prevalence estimates or patient identification yields.
Phase 2 Basket Study Indications Have Significant Patient Populations

- Smith-Magenis syndrome: ~2,400*
- MC4R deficiency: ~10,000*
- POMC or LEPR heterozygous deficiency: >20,000*
- SRC1 deficiency: >23,000*
- SH2B1 deficiency: >24,000*

Total potential patient population approximately 80,000

* Company estimates calculated based on the following assumptions: US pop 327 million; 1.7% has early onset, severe obesity (Hales et al in JAMA – April 2018: Trends in Obesity and Severe Obesity Prevalence in US Youth and Adults by Sex and Age, 2007-2008 to 2015-2016); Allele frequency based on Rhythm genetic sequencing (June 2019)
Setmelanotide has been evaluated in more than 400 patients with obesity, with individual patient treatment duration now exceeding four years.

Setmelanotide has been generally well-tolerated

Most AEs are mild:

- Mild injection site reactions
- Darkening of skin (tanning) and skin lesions, mediated by the closely related MC1 receptor (the natural “tanning” receptor)
- Nausea/vomiting: mild and early in treatment

Discontinuations are rare; no increase in CV parameters

- In POMC and LEPR pivotal trials, setmelanotide was not associated with significant changes to blood pressure or heart rate

Patient experience with setmelanotide*

<table>
<thead>
<tr>
<th>Duration on therapy</th>
<th># of patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1 year</td>
<td>> 420</td>
</tr>
<tr>
<td>> 1 year</td>
<td>42</td>
</tr>
<tr>
<td>> 2 years</td>
<td>16</td>
</tr>
<tr>
<td>> 3 years</td>
<td>3</td>
</tr>
<tr>
<td>> 4 years</td>
<td>2</td>
</tr>
</tbody>
</table>

* Estimates as of November 2019, inclusive of patients likely randomized to treatment in certain double-blinded clinical studies.
POMC and LEPR Deficiency Obesities

Secure FDA approval for POMC and LEPR deficiency obesities
Setmelanotide Met all Primary and Key Secondary Endpoints in Phase 3 Trials for POMC and LEPR

Demonstrated statistically significant and clinically meaningful reductions of weight and hunger

<table>
<thead>
<tr>
<th>POMC Phase 3 Topline*</th>
<th>LEPR Phase 3 Topline*</th>
</tr>
</thead>
<tbody>
<tr>
<td>80%</td>
<td>45.5%</td>
</tr>
<tr>
<td>p<0.0001</td>
<td>p<0.0001</td>
</tr>
<tr>
<td>-25.4%</td>
<td>-12.5%</td>
</tr>
<tr>
<td>p<0.0001</td>
<td>p<0.0001</td>
</tr>
<tr>
<td>-27.8%</td>
<td>-41.9%</td>
</tr>
<tr>
<td>p=0.0005</td>
<td>p<0.0001</td>
</tr>
<tr>
<td>31.9kg</td>
<td>16.7kg</td>
</tr>
<tr>
<td>70.2lbs</td>
<td>36.8lbs</td>
</tr>
</tbody>
</table>

Substantial, consistent increases in weight and hunger during placebo withdrawal period

18 of 19 eligible participants continuing on setmelanotide in the extension study

NDA submitted in 1Q 2020
MAA submission expected in 2Q 2020

*Data announced by Rhythm in August 2019 and presented at The Obesity Society annual meeting during ObesityWeek in November 2019.
Setmelanotide Once-weekly Subcutaneous Injection in Development

Update expected in 2020 on clinical development

- Setmelanotide delivered through gel-like depot with slow diffusion
 - Mean pharmacokinetic half-life of 123 hours
 - Formulation intended to be more patient-friendly

- Currently being evaluated in more than 70 healthy obese volunteers
 - Trial includes daily cohort receiving doses higher than those used in Phase 3 pivotal trials
 - Designed to evaluate pharmacokinetics, pharmacodynamics, safety after three months on investigational drug

- Partnership with Camurus AB leveraging FluidCrystal® technology
RM-853: Potent, Orally Available GOAT Inhibitor for Prader-Willi Syndrome (PWS)

IND filing for RM-853 expected in 2020

- Ghrelin O-Acyltransferase (GOAT) is key enzyme involved in producing active ghrelin
- Blocking GOAT results in:
 - Lower levels of active ghrelin, *and*
 - Increased levels of des-acyl-ghrelin (DAG), a ghrelin precursor believed to have independent beneficial effects
- In preclinical studies with high fat-fed mice, RM-853 prevented body weight gain and reduced fat mass, with favorable PK, PD and safety profile
- Development plan complements and expands ongoing efforts:
 - RM-853 IND filing expected in 2020
 - Plan to explore potential of setmelanotide and RM-853 combination in PWS

Ghrelin is tightly correlated with hunger signals throughout the day

People with PWS have higher ghrelin levels
U.S. Prevalence Estimates Suggest >85,000 Patients with MC4R Pathway-driven Rare Genetic Disorders of Obesity

Pivotal Indications = > 5,000
- POMC deficiency obesity
- LEPR deficiency obesity
- Bardet-Biedl syndrome
- Alström syndrome

HETs: > 20,000
- POMC and LEPR heterozygous deficiency obesities

New indications > 60,000
- SRC1 deficiency obesity
- SH2B1 deficiency obesity
- Smith-Magenis syndrome
- MC4R deficiency obesity

* Company estimates calculated based on the following assumptions: US pop 327 million; 1.7% has early onset, severe obesity (Hales et al in JAMA – April 2018: Trends in Obesity and Severe Obesity Prevalence in US Youth and Adults by Sex and Age, 2007-2008 to 2015-2016); Allele frequency based on Rhythm genetic sequencing (June 2019); Company also estimates that EU prevalence is similar for each indication.
Cash Expected to be Sufficient to Fund Operations Through at Least End of 2021

<table>
<thead>
<tr>
<th>Shares Outstanding as of 03/31/2020</th>
<th>44,088,390 (basic share count)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash, Cash Equivalents and Short-Term Investments as of 03/31/2020</td>
<td>$ 257.4 million</td>
</tr>
</tbody>
</table>
Meet Katy: Living with HET Obesity

“It causes extreme unrelenting hunger and excessive eating. As a child...the fridge and food was controlled massively...but nobody could understand that I was desperately hungry and just wanted to stop that feeling.”

INFANCY:
“Normal” weight at birth, but begins to rapidly gain weight at 9 weeks

4 YEARS:
Diagnosed with POMC Heterozygous Deficiency Obesity

CHILDHOOD:
Self-isolation and missed school days
Asthmatic, increased pain and pressure on her knees make play and PE difficult

ADOLESCENCE:
Put on anti-depressants
Numbness and agonizing back pain
Abnormal pubertal development

23 YEARS (CURRENT):
Sleep apnea; some cardiac issues; insulin resistance. Cracked and bleeding skin

3 YEARS

11 YEARS, 231 POUNDS

23 YEARS, 450 POUNDS

11 YEARS, 231 POUNDS

3 YEARS
Living with the Insatiable Hunger and Obesity that Characterize BBS

“As our daughter Lucy grows older, the weight obstacle of BBS looms more ominously before us, hindering much of what we do. Lucy measures most of her activities and much of her happiness around when her next meal is, what food is available where, and it is an overwhelming task to help her take control. Weight affects so much in her life and we are working so hard to fight to give her a more fulfilling life without the confines that obesity presents.”

- Shawni, mother to Lucy, a child living with BBS
Appendix
Strong Leadership Team with Broad Biopharma Experience

<table>
<thead>
<tr>
<th>Hunter Smith</th>
<th>Nithya Desikan</th>
<th>Murray Stewart, MD</th>
<th>Simon D. Kelner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interim Chief Executive Officer</td>
<td>Chief Commercial Officer</td>
<td>Chief Medical Officer</td>
<td>Chief Human Resources Officer</td>
</tr>
<tr>
<td>Chief Financial Officer</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Hunter Smith**
 - **Financial leadership for Otezla®**;
 - 20-plus years in finance, M&A, capital markets

- **Nithya Desikan**
 - 15-plus marketed products and NDAs
 - 7 commercial launches

- **Murray Stewart, MD**
 - 20-plus marketed products and NDAs
 - 10-plus INDs

- **Simon D. Kelner**
 - 25-plus years global HR leadership experience in biopharma
Setmelanotide: Investigational MC4R agonist

FDA Breakthrough Therapy Designation
- POMC deficiency obesity
- LEPR deficiency obesity
- Bardet-Biedl syndrome
- Alström syndrome

FDA Orphan Drug Designation
- POMC deficiency obesity
- LEPR deficiency obesity
- Bardet-Biedl syndrome

EMA PRIME Designation
- For treatment of obesity and control of hunger associated with deficiency disorders of the MC4R pathway

Setmelanotide is an eight-amino-acid cyclic peptide that retains specificity and functionality of naturally occurring hormone that activates MC4R.

- Daily subcutaneous injection; once-weekly formulation in development
- Composition of matter patents in all major markets
- Highly competitive cost of goods

POMC, pro-opiomelanocortin; LEPR, leptin receptor
Rhythm Pipeline Focused on MC4R Pathway Disorders

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Early-stage development</th>
<th>Phase 2</th>
<th>Phase 3</th>
<th>Registration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setmelanotide
Pivotal Studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POMC deficiency obesity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEPR deficiency obesity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bardet-Biedl syndrome</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alström syndrome</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setmelanotide
Basket Study</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POMC or LEPR heterozygous deficiency obesity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRC1 deficiency obesity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SH2B1 deficiency obesity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MC4R deficiency obesity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smith-Magenis syndrome</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additional disorders*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RM-853</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prader-Willi syndrome**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Rhythm is currently assessing setmelanotide in additional disorders, including POMC epigenetic disorders and LEP and CPE deficiency obesity, as part of investigator-initiated protocols within the basket study. Given the recent discovery of these rare disorders of the MC4R pathway, there is currently limited or no genetic sequencing or epidemiology data that defines prevalence. However, Rhythm believes that these are rare disorders which may be setmelanotide-responsive.

** Rhythm is currently assessing opportunities to further evaluate setmelanotide in PWS and plans to pursue these in parallel with the development of RM-853.
BBS and Alström Syndrome Pivotal Trial Statistical Approach

<table>
<thead>
<tr>
<th>Primary endpoint</th>
<th>Three key secondary endpoints (after ~52 weeks of treatment)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportion of patients (≥12 years old) who achieve ≥10% reduction in body weight after ~52 weeks of treatment</td>
<td>Proportion of patients (≥12 years old) who achieve a ≥25% improvement in daily hunger score</td>
</tr>
</tbody>
</table>

- **Primary**: Based on an exact binomial test, at a 1-sided 0.05 significance level; A 2-sided 90% CI will be calculated using the exact Clopper-Pearson method. The statistical criterion corresponds to the 2-sided 90% CI for setmelanotide of the response rate excluding 10% (i.e., lower bound of the CI >0.10)

- **Secondary**: Based on a one-sample t-test with assumed mean percent change from baseline of zero, at a 1-sided 0.05 significance level.
 - As in the POMC/LEPR pivotal trials, these percent change analyses to be conducted on pivotal patients who achieve at least 5 kg (or 5% if <100 kg) weight loss after 14 weeks of active setmelanotide treatment

- **Historical control response rate of 10% responders is used as a comparator for primary endpoint and responder key secondary endpoint, in the Full Analysis Set**
- **All prespecified primary and key secondary analyses are performed on the pooled BBS and Alström syndrome pivotal patient population**
- **Power Statement**: A sample size of 7 patients provides ~95% power at 1-sided alpha of 0.05 and ~91% power at 1-sided alpha of 0.025, to yield a statistically significant difference, assuming the Phase 2 Basket Study 66% response for weight loss
- **Although these data suggest that powering the study for the primary endpoint will require a minimal number of patients (N<10), the size of the trial is also a function of the rarity of BBS and Alström syndrome and a desire to better understand the effect of setmelanotide in these patient populations. Hence, at least 20 BBS and at least 6 Alström syndrome patients were planned to be enrolled in the study (N=38 were actually enrolled in the pivotal cohort)**

- **Rhythm proposed Statistical Analysis Plan; not all elements reviewed by FDA**
POMC and LEPR Phase 3 Trials Achieve Statistically Significant and Clinically Meaningful Results in Reductions of Weight and Hunger

POMC Phase 3 Results

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportion of Participants Achieving at Least 10% Change in Body Weight</td>
<td>80%</td>
</tr>
<tr>
<td></td>
<td>p<0.0001</td>
</tr>
<tr>
<td>Mean Percent Change from Baseline in Body Weight*</td>
<td>-25.4%</td>
</tr>
<tr>
<td></td>
<td>p<0.0001</td>
</tr>
<tr>
<td>Mean Percent Change from Baseline in Most Hunger Rating †</td>
<td>-27.8%</td>
</tr>
<tr>
<td></td>
<td>p=0.0005</td>
</tr>
<tr>
<td>Proportion of Participants with 25% Reduction in Hunger†</td>
<td>50%</td>
</tr>
<tr>
<td></td>
<td>p=0.0004</td>
</tr>
<tr>
<td>Participants Aged ≥19 years Mean Percent Change from Baseline in BMI (n=4)</td>
<td>-22.33%</td>
</tr>
<tr>
<td></td>
<td>p=0.056</td>
</tr>
<tr>
<td>Participants Aged <19 years Mean Percent Change from Baseline in BMI z-score (n=6)</td>
<td>-49.18%</td>
</tr>
<tr>
<td></td>
<td>p=0.007</td>
</tr>
</tbody>
</table>

LEPR Phase 3 Results

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportion of Participants Achieving at Least 10% Change in Body Weight</td>
<td>45.5%</td>
</tr>
<tr>
<td></td>
<td>p=0.0001</td>
</tr>
<tr>
<td>Mean Percent Change from Baseline in Body Weight*</td>
<td>-12.5%</td>
</tr>
<tr>
<td></td>
<td>p<0.0001</td>
</tr>
<tr>
<td>Mean Percent Change from Baseline in Most Hunger Rating †</td>
<td>-41.9%</td>
</tr>
<tr>
<td></td>
<td>p<0.0001</td>
</tr>
<tr>
<td>Proportion of Participants with 25% Reduction in Hunger†</td>
<td>72.7%</td>
</tr>
<tr>
<td></td>
<td>p<0.0001</td>
</tr>
<tr>
<td>Participants Aged ≥19 years Mean Percent Change from Baseline in BMI (n=8)</td>
<td>-10.59%</td>
</tr>
<tr>
<td></td>
<td>p=0.01</td>
</tr>
<tr>
<td>Participants Aged <19 years Mean Percent Change from Baseline in BMI z-score (n=3)</td>
<td>-13.35%</td>
</tr>
<tr>
<td></td>
<td>p=0.12</td>
</tr>
</tbody>
</table>

These data were presented as part of the Company’s topline data disclosure on Aug. 7, 2019, and as late-breaking presentations during ObesityWeek 2019.

* endpoint analyzed on evaluable population, which includes participants who achieved weight loss threshold (5kg or 5% if <100 kg) after open label period 1.
† score is based on 0-10 Likert scale from question, “In the last 24 hours, how hungry did you feel when you were the most hungry?” for participants at least 12 years of age.

Data were presented during late-breaking research forum at the 37th Annual Meeting of The Obesity Society at ObesityWeek® 2019.
Taking a Closer Look at POMC

- 8 of the 10 POMC participants achieved the primary endpoint threshold of 10% weight loss vs. baseline
- These individuals achieved between 25.8% – 35.6% weight loss
- Of the participants who did not meet the primary endpoint:
 - One participant had confounding comorbidities making their response difficult to assess
 - One participant had a genetic variant that we later learned may not be a loss of function variant in POMC

These data were presented as part of the Company’s topline data disclosure on Aug. 7, 2019.
POMC Phase 3 Trial – Change in Weight and Hunger Over 1 Year with Substantial Weight Gain and Hunger Increase During Placebo Withdrawal

<table>
<thead>
<tr>
<th>During Placebo Period:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change in weight (kg)</td>
</tr>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>Range</td>
</tr>
<tr>
<td>Change in hunger score</td>
</tr>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>Range</td>
</tr>
</tbody>
</table>

These data were presented as part of the Company’s topline data disclosure on Aug. 7, 2019.
Taking a Closer Look at LEPR

- 5 of the 11 LEPR participants achieved the primary endpoint threshold of 10% weight loss vs. baseline
- These individuals achieved between 15.2% - 23.3% weight loss
- Of the participants who did not meet the primary endpoint:
 - Three participants showed initial meaningful responses but after the placebo period appeared to lose response to setmelanotide:
 - One of these participants missed primary endpoint by achieving a 9.8% weight loss
 - Data for all three participants suggest incorrect dosing
 - All three participants experienced substantial weight gain when they came off drug after study completion and plan to enroll in extension
 - One participant discontinued treatment early in the study due to an AE
 - Two participants had confounding comorbidities making their response difficult to assess

These data were presented as part of the Company’s topline data disclosure on Aug. 7, 2019.
LEPR Phase 3 Trial – Change in Weight and Hunger Over 1 Year with Substantial Weight Gain and Hunger Increase During Placebo Withdrawal

These data were presented as part of the Company’s topline data disclosure on Aug. 7, 2019.

Change in Weight*

<table>
<thead>
<tr>
<th>Week</th>
<th>Change in Weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BL</td>
<td></td>
</tr>
<tr>
<td>V1</td>
<td></td>
</tr>
<tr>
<td>V2</td>
<td></td>
</tr>
<tr>
<td>V3</td>
<td></td>
</tr>
<tr>
<td>V4</td>
<td></td>
</tr>
<tr>
<td>V5</td>
<td></td>
</tr>
<tr>
<td>V6</td>
<td></td>
</tr>
<tr>
<td>V7</td>
<td></td>
</tr>
<tr>
<td>V8</td>
<td></td>
</tr>
<tr>
<td>V9</td>
<td></td>
</tr>
<tr>
<td>V10</td>
<td></td>
</tr>
<tr>
<td>V11</td>
<td></td>
</tr>
<tr>
<td>V12</td>
<td></td>
</tr>
<tr>
<td>Final Visit</td>
<td></td>
</tr>
</tbody>
</table>

Change in Hunger Score

<table>
<thead>
<tr>
<th>Week</th>
<th>Change in Hunger Score (Most in 24 hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 0</td>
<td></td>
</tr>
<tr>
<td>Week 10</td>
<td></td>
</tr>
<tr>
<td>Week 20</td>
<td></td>
</tr>
<tr>
<td>Week 30</td>
<td></td>
</tr>
<tr>
<td>Week 40</td>
<td></td>
</tr>
<tr>
<td>Week 50</td>
<td></td>
</tr>
<tr>
<td>Week 60</td>
<td></td>
</tr>
</tbody>
</table>

During Placebo Period:

- **Change in weight (kg):**
 - Mean: +4.9
 - Range: 2.9-9.3

- **Change in hunger score:**
 - Mean: +3.1
 - Range: 4.0 to 10.0

* BL, baseline; V, nominal visit; N, number; error bars are confidence intervals (90%)

† Endpoint analyzed on evaluable population, which includes participants who achieved weight loss threshold (5kg or 5% if <100 kg) after open label period 1

‡ Score is based on 0-10 Likert scale from question, “In the last 24 hours, how hungry did you feel when you were the most hungry?” for participants at least 12 years of age

These data were presented as part of the Company’s topline data disclosure on Aug. 7, 2019.
POMC Deficiency Obesity

<table>
<thead>
<tr>
<th>Age at Trial Enrollment (years)</th>
<th>Mean (range) 18.4 (11-30)</th>
</tr>
</thead>
<tbody>
<tr>
<td><12 years old (n)</td>
<td>2</td>
</tr>
<tr>
<td>Gender, M,F</td>
<td>5, 5</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>118.7</td>
</tr>
<tr>
<td>Range</td>
<td>55.9-186.7</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>40.4</td>
</tr>
<tr>
<td>Range</td>
<td>26.6-53.3</td>
</tr>
<tr>
<td>Most Hunger (≥12 years old)</td>
<td></td>
</tr>
<tr>
<td>Most hunger in 24 hours</td>
<td>8.0</td>
</tr>
<tr>
<td>Range</td>
<td>7.0-9.0</td>
</tr>
</tbody>
</table>

LEPR Deficiency Obesity

<table>
<thead>
<tr>
<th>Age at Trial Enrollment (years)</th>
<th>Mean (range) 23.4 (12-37)</th>
</tr>
</thead>
<tbody>
<tr>
<td><12 years old (n)</td>
<td>0</td>
</tr>
<tr>
<td>Gender, M,F</td>
<td>3, 8</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>133.3</td>
</tr>
<tr>
<td>Range</td>
<td>89.4-170.4</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>48.2</td>
</tr>
<tr>
<td>Range</td>
<td>35.8-64.6</td>
</tr>
<tr>
<td>Most Hunger (≥12 years old)</td>
<td></td>
</tr>
<tr>
<td>Most hunger in 24 hours</td>
<td>7.1</td>
</tr>
<tr>
<td>Range</td>
<td>5.0-8.0</td>
</tr>
</tbody>
</table>
Updated Phase 2 Data in Alström Syndrome

<table>
<thead>
<tr>
<th>Age at enrollment/ Sex</th>
<th>Baseline Weight (kg)</th>
<th>Treatment, weeks</th>
<th>% Weight Change from Baseline</th>
<th>% Hunger Score Change from Baseline†</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/M</td>
<td>78.6</td>
<td>95</td>
<td>-20%</td>
<td>-25%</td>
</tr>
<tr>
<td>15/F</td>
<td>70.7</td>
<td>84</td>
<td>1%</td>
<td>-38%</td>
</tr>
<tr>
<td>16/F</td>
<td>91.6</td>
<td>68</td>
<td>-6%</td>
<td>0%</td>
</tr>
</tbody>
</table>

- Patient 1 has reached healthy body weight
- Patient 3 maintaining weight and reduced hunger – HbA1c decreased by 3% from 11% to 8%
- All 3 continuing patients plan to enter long-term extension trial

*As previously disclosed, patient 2 (data not shown) discontinued at ~14 weeks; Updated data announced by Rhythm in September 2019.
All high-impact LOF patients appear setmelanotide-responsive; other subgroups have more variable responses

<table>
<thead>
<tr>
<th>Total treatment duration² (weeks)</th>
<th>Baseline Weight (kg/lbs)</th>
<th>Weight Loss (kg/lbs)</th>
<th>Weight loss</th>
<th>Change in Hunger Score (10 pt scale)</th>
<th>Hunger score reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-Impact LOF Group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>204 (451)</td>
<td>18.4 (40.5)</td>
<td>9.0%</td>
<td>-9</td>
<td>90.0%</td>
</tr>
<tr>
<td>29</td>
<td>129 (284)</td>
<td>22.3 (49.0)</td>
<td>17.3%</td>
<td>-5</td>
<td>71.4%</td>
</tr>
<tr>
<td>4</td>
<td>187 (412)</td>
<td>7.1 (15.6)</td>
<td>3.8%</td>
<td>-4</td>
<td>40.0%</td>
</tr>
<tr>
<td>Other Subgroups</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>150 (330)</td>
<td>12.1 (26.6)</td>
<td>8.0%</td>
<td>-7</td>
<td>78.0%</td>
</tr>
<tr>
<td>66</td>
<td>147 (323)</td>
<td>7.5 (16.5)</td>
<td>5.1%</td>
<td>-1</td>
<td>20.0%</td>
</tr>
<tr>
<td>20</td>
<td>118 (259)</td>
<td>15.0 (33.0)</td>
<td>12.8%</td>
<td>-6</td>
<td>75.0%</td>
</tr>
<tr>
<td>16</td>
<td>106 (232)</td>
<td>7.2 (15.8)</td>
<td>6.9%</td>
<td>-7</td>
<td>70.0%</td>
</tr>
<tr>
<td>7</td>
<td>150 (330)</td>
<td>4.6 (10.1)</td>
<td>3.0%</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

High-Impact LOF Group:
- All patients ongoing; fourth patient, still very early in dose titration, showing promising weight loss and hunger score decreases.

Other Subgroups:
- Five patients ongoing¹
- Four patients discontinued treatment:
 - One patient due to lack of efficacy at 14 weeks². Three patients with ≤ 4 weeks of total therapy, so efficacy not able to be assessed: two patients due to AE (tanning, muscle cramps)³ and one patient withdrawn by site for patient non-compliance.

¹Two of these patients were reported in June 2018. ²Total treatment duration including any titration period, which can last 6-12 weeks. ³These three patients were reported in June 2018. AE = adverse event
New MC4R Pathway Indications Based on Supported Scientific Rationale

UPSTREAM

Satiety Signals (Leptin)

Leptin

LEPR

RAI1

SH2B1

SRC1

POMC NEURON

DOWNSTREAM

MC4R-EXPRESSING NEURON

↓ Appetite
↓ Weight
↑ Energy expenditure

MSH

POMC

PCSK1

ACTIVATION
SRC1 is a Transcriptional Coactivator that Drives POMC Expression

Pathway Relevance: Drives POMC Expression
- Transcriptional coactivator activated downstream of LEPR
- Found in POMC neurons

Autosomal Dominant
- Obesity arises due to heterozygous gene variants

Clinical Presentation
- Early onset obesity and hyperphagia
- Hyperleptinemia

Citations
- Yang et al 2019, Nat Comm. 10, Article 1718
SH2B1 is an Adapter Protein that Regulates LEPR Activity

Pathway Relevance: Regulates LEPR activity
- Adapter protein
- Found in POMC neurons

Autosomal Dominant
- Obesity arises due to heterozygous gene variants or chromosomal deletions

Clinical Presentation
- Early onset obesity and hyperphagia
- Hyperinsulinemia

Citations
- Doche et al 2011, JCI, 122; 4732
- Ockukova et al 2010, Nature, 463; 666
MC4R: Receptor for POMC Ligand MSH

Pathway Relevance: Receptor for POMC ligands
- Required for satiety effects of α/β-MSH

Autosomal Dominant
- Obesity arises due to heterozygous gene variants

Clinical Presentation
- Early onset obesity and hyperphagia

Setmelanotide
- Pharmacological target for setmelanotide
- Rhythm conducted small, 4-week Phase Ib study in MC4R deficiency obesity
- Rhythm biochemical studies indicate that setmelanotide can address specific MC4R variants
- Current indication is focused on addressable MC4R variant carriers

Citations
- Farooqi et al 2003, NEJM, 348; 1085
- Collett et al 2017, Molecular Metabolism, 6; 1321
Smith-Magenis Syndrome: RAI1 Affects POMC Expression

Pathway Relevance: Decreased Pathway Function Upstream of MC4R
- Causal gene is RAI1
- Transcription factor for a number of pathway genes

Autosomal Dominant
- Gene variants and chromosomal deletions

Clinical Presentation
- Adolescent obesity and hyperphagia
- Sleep disturbance, cognitive impairment, craniofacial anomalies, low energy expenditure

Citations
- Burns et al 2010, Hum. Mol. Gen; 19; 4026
POMC and LEPR Deficiency Obesities Characterized by Early-onset Obesity, Unrelenting Hunger

POMC Deficiency Obesity
- Results from loss-of-function homozygous or biallelic variants in the POMC gene
- Early-onset, severe obesity
- Hyperphagia
- Light, pale skin
- Hypoglycemia
- Hypocortisolism and ACTH deficiency

LEPR Deficiency Obesity
- Results from loss-of-function homozygous or biallelic variants in the LEPR gene
- Early-onset, severe obesity
- Hyperphagia
- Developmental delays
- Frequent infections
- Hyperinsulinemia

U.S. prevalence estimated to be 100 to 500 patients

No approved therapies

U.S. prevalence estimated to be 500 to 2,000 patients
Bardet-Biedl and Alström Syndromes Associated with Severe Obesity and Hunger

Bardet-Biedl syndrome
Rare ciliopathy disorder resulting from genetic variants within **BBS family** of genes

- Hyperphagia
- Progressive vision impairment/loss
- Polydactyly (extra finger or toe)
- Renal disease
- Early-onset, severe obesity

U.S. prevalence estimated to be **2,500** patients

Alström syndrome
Rare ciliopathy disorder associated with **ALMS1** mutation

- Hyperphagia
- Progressively worsening vision and hearing
- Cardiomyopathy
- Early-onset, severe obesity
- Type 2 diabetes
- Endocrine abnormalities

U.S. prevalence estimated to be **500** patients
